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The Lanczos homogeneous filter diagonalization method and the real Chebyshev filter diagonalization scheme
incorporating doubling of the autocorrelation functions have been employed to compute the-tirational

states for high total angular momeniias= 30, 40, and 50. For such computationally challenging calculations,

we have adopted a parallel computing strategy to perform the mateintor multiplications. Low-lying bound

states and high-lying bound states close to the dissociation threshold are reported. For low-lying bound states,
a spectroscopic assignment has been attempted and the widely used apprdshitiileg method has been

tested for this deep-well system. For high-lying bound states, the attempted spectroscopic assignments as
well as theJ-shifting approximation fail because of very strong Coriolis mixing, indicating that the Coriolis
couplings are important for this system.

1. Introduction promising recent numerical developments. These methods are
useful, especially for large basis sets, because they do not require
explicit storage of the Hamiltonian matrix. Rather, only the
multiplication of the Hamiltonian onto a vector is required.
When combined with a sparse representation of the Hamiltonian,
such as a discrete variable representation (D¥Rjth memory

Exact nonzero total angular momentudn> 0) calculations
are essential in fully understanding quantum reaction dynamics
and in correctly simulating molecular spectroscopy. For ex-
ample, in unimolecular dissociation, to understand the temper-
ature variation of rate constants, it is important to |mplement and CPU time can be reduced dramatically.
manyJ > 0 calculations as accurately as possible. In bimolecular

reactions, the detailed cross sections can only be obtained after i La?czos fThethde explmtbthe advsnta_?tes _Of theh_trlkc]hagonal
summing over many manifolds of scattering matrix elements structure ot the Lanczos subspace riamiitoniarn, which 1S gen-

associated with nonzerd When assigning experimental mo- erateq by the iterative Lanczos algoritﬁmlthoggh.the Lanpzo_s
lecular spectra, it is necessary to compute exactly the ro- algorithm h_as been used_commonly for matrix d|ag_onal|zé‘%|on
vibrational states involved. However, these O calculations and short-time propagationSrecent work in the Brisbane lab

are still very challenging even for triatomic reactions, especially has focused on exploring more general applications of the

when dealing with complex forming systems. The major reason Iagnczosllre?reSEntﬁylc;]ni |.nclléd|ngdspteftral dgns%ﬁe’@,gé%%
for this situation is the so-called “angular momentum catastro- lagonailzation for high-lying bound states and resona ’

phe’L manyJ > 0 calculations have to be performed, and the partial resonance widths in unimolecular dedagnd state-to-
size of the Hamiltonian matrix increases linearly wthor state reactive scatterif§2°An important feature of these newer
these nonzerd calculations, it is apparently impractical to I_.anc'zos |mplementat|on§ IS that all physically reIevantllnformall-
employ conventional direct diagonalization methods because oftion is ext_racted from vv_|th|n _the Lanc_zos representation. _Th|s
the extensive computer core memory needed. Several sophis-auows asingle Lanczos iteration of arbitrary length to b(_a ut|I|_zed
ticated basis-set contraction schefveado exist, but because of for the propagation rather'than a sequence of shqrt |§erat|0ns.
their unfavorable scaling they are limited to optimized basis We note that for scattering or resonance _ap_phcatlons the
sets of N < 10 000. Variational approaches can be used to abso[rblng boqndary coqdmons are imposed W"h'_” the Lanc_zos
compute the low bound states accurately, but for high-lying algonthm by Incorporation of a complex absorbing potgntlal
bound states, convergence becomes difficult with the increasing(.CAP) into the Ham|lton|§1n. Consequently, the Lgncgqs ltera-
size of the basis sé€ Iterative methods such as the real UONS are cqmplex and y|e|_d a _complex-symmet_nc tridiagonal
Chebyshev iterative methéd and the Lanczos methd& are representation of the Hamiltonian, although as is well known

well suited to solving this type of large-scale eigenvalue problem (e.g., ref 13) the complex-§ymmetr|c Langzps approach is
and in recent years have become increasingly popular. Thenumencally less stable than its real or Hermitian counterparts.

preconditioned inexact spectral transformation method devel- Significant progress has also been made recently in th_e search
oped recently by Carrington and co-workers is a promising for a real Lan<_:zos subspace methoq.capgble of computing state-
variant of these methods that can reduce the required numbelm's'[ate reactive Scat,te”“g probablht%;.

of iterations substantially at high energiés'® Combination Another powerful iterative method is the real Chebyshev
methods such as the two-layer Lanczos iteration approachmethOd’ which is attractive from both computational time and

introduced by Y& and the contracted basis-iterative method COMPUter memory points of view. Its origin lies with the early
introduced by Carrington and co-work&tsalso represent work of Tal-Ezer and Kosloff¢ in which the evolution operator

exp(—iHt/h) is expanded in terms of Chebyshev polynomials.
T Part of the special issue “tyen Troe Festschrift”. Subsequently, very important developments were made by
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new time-independent (Tl) wave packet Lippmai8thwinger (i.e., the complex-symmetric Lanczos algorithm and the real
equation and presented Chebyshev expansion expressions fodamped Chebychev propagation) because this allows the output
both the Green operator and the Dirac delta function. Man- of the calculations to be analyzed further to investigate resonance
delshtam and Taylé?*?introduced a real damping scheme into  structure above the dissociation threshold. Such analysis of the
the Chebyshev recursion, which made the real wave packetcontinuum part of the spectra is, however, beyond the scope of
method possible for dissipative systems. The real Chebychevthe current paper.
propagation method can be viewed in an alternative way as a The HQ, system is very important in combustion chemistry
modification of the time-dependent Scbioger equation. In - and atmospheric chemistfy and hence has been studied
this respect, two related (discrete/continuous time) forms of the extensively from both theoretical and experimental perspectives.
modified equations have been proposed by Chen and*@nd However, even this seemingly simple system involving only
more generally by Gray and Balint-Kufti. These various real  three atoms turns out to be very difficult to model quantum
wave packet approaches have been applied successfully tamechanically. Unlike the kor HoF (or their isotopes) systems,
different fields such as bound- or resonance-state calcula-see, for example, refs 5&0, the agreement between theory
tions®"4>reactive scatteringf; 8 and surface scatterirf§>°For and experiment, and even among different theories and different
bound-state calculations, it is possible to exploit the doubling experiments, has not yet reached a quantitative level fos. HO
scheme to Compute autocorrelation fUnCtionS, which will double The reader is referred to Wolfrum for some detailed Compari_
the efﬁCiency of the real ChebySheV iteration. For resonance sonstl The potentia] energy surfaces (PES) used most are those
computations, Li and Guo intuitively proposed that the scheme py Melius and Blint2 Varandas and co-workef3 Kendrick
of dOUbling ChebySheV correlation functions should still be and Pa(‘;l@,4 and Troe and Co-worké%(%(we note that accurate
valid,>* even if the damped Chebyshev recursion is adopted, ap initio surfaces further adjusted to fit experimental spectro-
with numerical validation of their proposal for several molecular scopic data have been repoftethd that very recently a new
systemg!>2 Recently, Neumaier and Mandelshtam derived a global ab inito PES for the HOground state has been
pseudo-time Scliinger equation and provided rigorous proof  developeéf). Although most of the calculations have focused
that an exact doubling formula exists for damped Chebyshev on theJ = 0 case because of obvious computational difficulties,
propagatior?? It is Neumaier and Mandelshtam’s newest J> Q calculations have begun to appear in recent years. Among
dOUb”ng SCheme, in combination with their low Storage filter them, Goldfield’s grouﬁﬁ&ﬁghas performed exact calculations
diagonalization strate@DS/LSFD), that we will employ to  of the initial-state-resolved reaction probability at sevetal
calculate the Challenging = 30, 40, and 50 low- as well as values for the bimolecular reactionH 0,—0OH+0.J>0
high-lying bound states of the H®ystem in this paper. The  calculations have been reported for the low-lying bound states
most important advantage associated with this approach is thathy Wu and Haye° Also notable is the work of Bunker et al.
one can employ a real algorithm with a single, extended in which a variational method has been employed to converge
Chebyshev vector recursion. The doubling sch@itiefor bound states up to 1.0 eV above the zero point level for some
calculating Chebyshev correlation functions leads to further high J values (refs 4 and 5 and private communications). We
efficiency in comparison with propagation of a complex wave have recently utilized the Lanczos homogeneous filter diago-
packet. Of course, the computational tasks are still too heavy najization (LHFD) method as well as the real Chebyshev method
using a conventional single-processor calculation for the high to compute bound states fd= 1—6, 10, and 20 as well as the
angular momentum cases studied in this Work, in particular for resonance eigenvameS, which y|e|d the quantum_speciﬁc rate
the high-lying bound states. Thus, we adopt a parallel computing constantsk(E,J).”*~73 Some comparisons have been presented
model herein. therein between the quantum rates and Troe et al.’s statistical
The reasons for employing parallel computing are twofold. results®®66The range of the angular momenta that are relevant
On one hand, the CPU time required to compute the high-lying to the thermal rate up to 5000 K is frodn= 0 to at leastl =
bound states for this system is substantial, partly because of605%°
the deep potential well corresponding to the Hé@mplex, Because of the computational challenges of the exact calcula-
which supports hundreds of bound states forxre0 case. As tions, approximate quantum methods such as adiabatic rotation
J increases, the number of bound states will increase linearly (AR),74 J-shifting”> and helicity-conserving (HG§ approxima-
with J, which makes the convergence more difficult. On the tions are used Commomy for nonzerb calculations. As
other hand, the storage requirement of the potential matrix andimportant as exact quantum methods may be, approximations
overlapping integrals also increases linearly witfrhus, with may become unavoidable for complex and/or large systems.
typical memory available on current cluster machines (i.e., a Therefore, it is of interest to compare the exact quantum results
few GBytes per node), the employment of parallel computing with different approximate methods. For complex-forming
strategies becomes unavoidable for higherlues. Recently,  reactions such as the H®ystem, Coriolis coupling is important
several groups have begun to exploit the power of parallel pecause of the large amount of flexibility in the molecule at
computing in performing the rigorous> 0 quantum dynamics  high energies, and such approximations might cause significant
calculations in TD wave packet methods and in sequential inaccuracies. Another motivation of this paper is to test these
diagonalization and truncation methdds? In this paper, we  approximations, for examplé;shifting, for such highl values
show how such parallel computations make it possible to and to investigate when and how it fails. The key issue in these
compute the dense ro-vibrational state manifold with compu- gpproximations is whether a reasonably good quantum number,
tational times and storage requirements comparable td the  Q, associated with the projection of total angular momentum
0 case. Our specific implementation involves a message-passintgn a body fixed axis exists. If the substaté€ks, of the wave
interface (MPIj8inserted in our local Fortran programs utilizing  function for J > 0 are heavily coupled, then the Coriolis
the real Chebyshev and Lanczos methods. coupling between the states cannot be ignored and any attempts
We note that although the present paper deals only with boundto assign the helicity quantum numbée, will fail. We will
states at large angular momenta our calculations are carried ouexamine this issue by comparing the exact quantum results with
with explicit incorporation of dissipative boundary conditions a rationally implemented-shifting approximation and a helicity
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quantum numberS2 , assignment for both spectroscopic sym- 21 3 h2 1 92
. : . e

metry calculations of bound states. If this assignment is H;g = ——— RO, 1000 — — réMcSQQ+
successful, then the approximate calculations may be applied, 2uR 8R2 r 8r
otherwise the Coriolis coupling should not be ignored and exact o
quantum methods have to be used. V(RIY:)0::000 + 2# Zur z Tali(i +

The remainder of this article proceeds as follows. In Section
2 we describe the theoretical methods needed to characterize  1yy2] Tﬁ oo+ [ JI+1) - 297 6,,000
bound states for nonzero total angular momentum, together with
a parallel computing model in brief. In Section 3 we provide +1 Q-1
computational details and then present the result$ of 30, Z QQHTQ Ogrgs + Z 99 1T g1 (4)

40, and 50 bound-state calculations performed on the HO
system. Detailed comparisons with previous work for the lower with
bound-state manifold witd = 30 as well as the comparisons )

with J-shifting approximation will also be given in Section 3. tgﬁ,gﬂ =—(1+
Section 4 concludes.

mpl’z 1§ \/J(J +1) - Q£ 1Wj( + 1) — QR + 1).

2. Methodology
In eq 4, we have use@-dependent DVR for the coordinate,

2.1. Representation.The three internal Jacobi coordinates which is obtained by either diagonalizing the coordinate operator
(Rr,y) are described with discrete variable representations (X = cosy) matrix
(DVRs), whereas the three Eulerian anglgg ) are described .
with a finite basis set’~7°® This procedure is very efficient Q'ij,-r = f_l 919(3/) X®jg'2()/) dx
because the potential part of the Hamiltonian matrix is diagonal,
which can reduce the memory requirement substantially. The or by a GaussJacobi quadrature scheme
triatomic Hamiltonian in Jacobi coordinates in a body fixed

frame is given by TN = f,ll W) 67(7) x65(y) dx.
A K2 1 5 K2 1 92 2 1“2 Here@ (y) is the associated Legendre polynomia(x) = (1
H=— ure 2 R + z +V(Rry) — x92'is the weight function, and

(1) 3
O7'() = (NI (L —X)™.

where orbital angular momentur? = (J — )2 =3 +] 2 -
2J-J. To reduce the six-dimensional (6D) Hamiltonian to a four-
dimensional (4D) one for each singlé value, we use a

In the GaussJacobi quadrature scheme, the transformation
matrix is set up according to

symmetric top eigen function to expand the total wave function. Q _ \/— @Q(X )
Multiplying the Hamiltonian on the left side Uyﬂ)ﬂ,,g(¢,9,w)|, *
one can obtain the coupled equations of motion. Heieethe Here/ is used to label the DVR in the coordinate, and; and

total angular momentum quantum number, and quantum numbery; are the quadrature points and weights, respectively, which
M is the projection of total angular momentum onto the space- can be obtained from standard meth&¥m the direct diago-
fixed zaxis. The derivations use the basic definitions of Wigner nalization scheme, the DVR points and the transformation matrix
D functions and some integral formulas. Although the details are simply the eigenvalues and the eigenvector matrix of the
of the derivation are very tedious, we will only give the final coordinate operator matrix. We have compared the two DVR
results of the coupled equations as follows schemes, and the DVR points as well as the transformation
matrix, T, from the two methods are nearly the same. Ror
A K21 9 K2 1 22 ( 1 andr coqrdinates, we havg used. potgntial-optimized DVR.
Hoo=—"55—=R— ———r +VRry)+|——+ The details of the DVRs will be given in Section 3.
' 2u R R 2ury R 2.2. Propagation.In the iterative Chebyshev method, the
1 K2 9 . 9 hZQZ K2 basic propagation is a three-term recursion. In their modified
5.2\ sin y oy ny @ Sir y ZuRz [E+1)— version of Chebyshev propagation, Mandelshtam and TAyfér
5 proposed a real damped Chebyshev polynomial recursion to
2Q7 (2) impose the outgoing boundary conditions. Because the damping
operator is introduced in the recursion, the doubling property
and of the original Chebyshev recursion to compute the autocorre-
lation functions would seem at first glance to be inapplicable.
N K2 However, as pointed out by Li and Gébthe original doubling
Hooi1 =1+ 69'”1)1/2— JJ(J +1)— Q(Q+1) scheme can still be adapted to calculate narrow resonances,
Z#RZ albeit in an approximate way. Neumaier and Mandelshtam
+ 0 +(Q + 1)coty| (3) subsequently provided a rigorous proof that an exact doubling
dy scheme exists for damped Chebyshev propagation. The new
damped Chebyshev propagation then becomes

with m = 0 for Hoo11 andm = 1 for Hg 1. Such coupled W C e W W
equations can be represented in DVR &1 =DW) "(2H oméc — &0 (5)
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He[eg‘évz @, is the initial real random wave packetla‘ﬁfi: component, buimax is the same, that is, the DVR size fpris
0.D(W) = 1 + 2W, andW is the absorbing potentiatnom = different for each2 component, and for the highest or the lowest
(H — H)Y/AH with H = 0.5Hmax + Hmin ) andAH = 0.5Hmax Q components, only one Coriolis coupling term is required;
— Hmin ). The new doubling formula is as follows thus, the load for each processor is still not perfectly balanced.
o X X Indeed, in distributed computing, there is always a tradeoff
Cu = (ENEN — (EYIDW)IEY) (6a) between load balance and complexity in coding. Our principle
is that strict balance is not absolutely necessary, but for the
Co 1= (Sﬁ'l g\lz\il) _ (E\lﬁﬂ D(W)EEV) (6b) present application the balancing works out quite well in general.

We note that other parallel models have been used to calculate
ro-vibrational states. For example, Wu and HaYekefined a
conceptional 3D mesh whef is used as one of the indices,
Mussa and Tennyséhhave employed a two step procedure,
and Eggert et &3 described a fine granularity parallel Lanczos
calculation in which a pseudo spectral split Hamiltonian scheme
has been employed to implement the action of the Hamiltonian

Similarly, in the Lanczos iteration, we choose a normalized, on the wave fl_Jnction_. Here different parall_el strategies_ are
randomly generated initial vector; = 0, and seff1 = 0 and employed to suit the different methods and different machines.

vo = 0. Then we use the basic Lanczos algorithm for complex- 2.3. Extraction of Relevant Information. In the LSFD

where the ¢|¢) denotes the complex nonconjugate inner product.
Such a doubling scheme can allow us to save the number of
Chebyshev iterations by a factor of 2, which is especially useful
for the heavy computational tasks such as the Higalue cases

in this paper. The autocorrelation functions need to be stored
in the Chebyshev propagation for later FD analysis.

symmetric matrice® method, given the discrete correlation functiag, one can
employ evolution operator, 4o set up a small-sized generalized
B = H'v, — a4y — Pt @) eigen equatiofi.Solution of the generalized eigen equation will

give all of the information for both bound states and resonances.
to project the non-Hermitian absorbing potential augmented The reader is referred to Mandelshtam and Taylor's work for

Hamiltonian into a Krylov subspace. Thé x M tridiagonal ~ More detail$:” In the LHFD method, we perform filter
representation of the Hamiltoniafiy, has diagonal elements, ~ diagonalization within the Krylov subspace representation to
ax = (udH'|ww), and subdiagonal elementsy = (vi—1|H'| ). extract the bound and resonance information for any chosen

Note that a complex-symmetric inner product is used (i.e., bra €nergy windows. A key issue in LHFD is solving the homo-
vectors are not complex conjugated). Again, the two vectors, 9eneous linear system by using an efficient backward three-
{(1} and {ﬂ}’ are stored in Lanczos iterations for later FD tel’m Subst.itution recursion. The details of LHFD have been
analysis to extract physical information such as bound-state ordiven previously:>2’
resonance quantities.

Though conceptionally simple, the propagation is the most 3. Results
time-consuming part of the calculation, and Hamiltonian
matrix—vector multiplications will be repeated for many times.
We use MPI to perform parallel computation for the matrix
vector multiplications. For even spectroscopic symmetry, the
4D matrix—vector multiplication looks like

3.1. Computational Details for the HO, System. The
triatomic HOQ, Hamiltonian matrix was set up in terms of
reactant Jacobi coordinates, and the;HDBE IV PES* was
employed as we have done previously Jo= 0—6, 10, and 20
bound-state and resonance calculat#ng’-"* 73 For the two

radial coordinates, a potential-optimized D&*RPODVR) was
EOO 301 HO 8 zgzo zgzo utilized to reduce the size of the Hamiltonian matrix. For Ehe
oo et = [rest (8) coordinate, we have uséé = 110 PODVR points, which were
0 Hy |_.|22 1/’9:2 ¢9=2 contracted from 315 evenly spaced primitive sinc DVR péihts
(U : ; spanning the range from 0.5 @ 11.0 @ with the one-
dimensional reference potenti®8(R,re,0¢). Similarly, for ther
with, o = Hoo-1%a-1 + Hooyao + Haoor1yor1. For odd coordinate,N, = 50 PODVR points were obtained from 150
spectroscopic symmetry, the Hamiltonian matrix is the same primary DVR points spanning the range from 13ta 5.0 @
exceptQ =1, 2, ...,J. The spectroscopic symmetry parity is using the reference potentid¥(R.,r,6¢). For they variable,
defined as{1)’"P, with p being the parity of the total 6D wave  Q-dependent symmetry-adapted DVR functions, defined by
function under inversion of the space-fixed nuclear coordinates. correspondingly associated Gaugsicobi quadrature points,
We adopt a natural way to distribute the problem with respect were employed to take account of the odet@ exchange parity.
to the Q blocks, which makes the calculations of autocorrela- Another kind of symmetry originated from the Wign&
tions or{a} and{3} much easier and necessitates only minimal functions; that is, spectroscopic symmetry, has also been
modifications of the code for parallel computing. We assign considered. The resulting direct product basis set was further
one processor as master processor=M), which is used to contracted by discarding those points whose potential energies
write autocorrelation functions dra} and{3} and assign all were higher than the cutoff energ¥uuor = 4.016 eV, resulting
other processors as working processors for performing thein the final basis size of approximately 110 70&{ 1) for even
matrix—vector multiplications for differenf components. Our  spectroscopic symmetry and approximately 110 ¥QDfor odd
implementation has the flexibility that any number of cpus (2 spectroscopic symmetry. This basis-set size has been tested
< n =< J+ 2)inacluster machine can be employed. According carefully for convergence for the= 0 case and is then carried
to the Coriolis coupling rules, only two nearest-neighlédr over to the] > 0 cases. For example, fér= 0 we have doubled
components need to communicate, and we use the MPI_SENDthe grid size for the angular coordinate while keeping the other
and MPI_RECEIVE commands to carry out such communica- two (R,r) grid sizes fixed and found that only the sixth digit of
tions. In this way the data transfer between processors is notbound-state energies varies. Hence, the degree of convergence
too heavy. We distribute the work load as equally as possible with respect to basis set parameters is on the order of five digits.
over processors. However, becaigg is different for eactf2 We note the issue raised in ref 85 of using an equilibrium value
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TABLE 1: Selected Low Bound-State Energies forJ = 30
and Even Spectroscopic Symmetry from DS/LSFD, LHFD,

Bunker et al.’s Variational Calculations, and J-Shifting
Approximation @

Zhang and Smith

TABLE 2: Selected Low Bound-State Energies forJ = 30
and Odd Spectroscopic Symmetry from DS/LSFD, LHFD,
and J-Shifting Approximation @

— n  DS/ILSFD  LHFD Jshifing Ka K¢ (v1,vavs)
n DS/LSFD LHFD Bunker J-shifting Ka K¢ (v1,v2,v3) 1 129246 129247 0127746 1 29 (0,0.0)
124642 124642 .124498 0.125357 0 30 (0,0,0) 2 134702 134703  0.134914 2 28 (0,0,0)
2 125728 125729 .125617 0.127746 1 30 (0,0,0) 3 .146814 146815  0.146859 3 27 (0,0,0)
3 .135318 .135319 .135005 0.134914 2 29 (0,0,0) 4 .163395 163395 0.163583 4 26 (0,0,0)
4 146785 .146786 .146458 0.146859 3 28 (0,0,0) 5 .184703 .184702  0.185085 5 25 (0,0,0)
5 .163396 .163396 .162959 0.163583 4 27 (0,0,0) 6 .210660 .210659  0.211365 6 24 (0,0,0)
6 .184702 .184702 .184127 0.185085 5 26 (0,0,0) 7 .241209 241207  0.242423 7 23 (0,0,0)
7 .210661 .210659 .209911 0.211365 6 25 (0,0,0) 8 .258503 .258505  0.287056 1 29 (0,0,2)
8 .241209 .241207 .240250 0.242423 7 24 (0,0,0) 9 .263879 263881  0.294118 2 28 (0,0,2)
9 .253944 253947 .259379 0.284702 O 30 (0,0,1) 10 .275937 275832  0.278259 8 22 (0,0,0)
10 .255012 .255014 .260476 0.287056 1 30 (0,0,1) 11 .276284 .276281  0.305887 3 27 (0,0,2)
11 .264490 .264492 .269912 0.294118 2 29 (0,0,1) 12 .290950 .290950 0.320773 1 29 (0,1,0)
12 .275801 .275803 .275077 0.278259 8 23 (0,0,0) a .
13 276284 276281 .281334 0.305887 3 28 (0,0,1) Other symbols are the same as those in Table 1.
ig 'gggggi 'gggggg 'gggggﬁ 8'3%8?% 2 gg gg’i‘gg TABLE 3: Selected Low Bound-State Energies forJ = 40
' ' ' ' " and Even Spectroscopic Symmetry from DS/LSFD, LHFD,
aThe ro-vibrational ground-state energy was calculatee2a015861 and J-Shifting Approximation @
eV relative to the dissociation limit of H O,, which is referred to as ahift
the zero energy point. All energy units are in eV. For these low bound —" DSLSFD _ LHFD _ Jshiing Ka Ko (vavzvs)
states, quantum numberka(K) and ¢1,v2,v3) are used to label the 1 .218531 218532  0.221060 0 40 (0,0,0)
energy levels. 2 219106  .219127 0.223449 1 40  (0,0,0)
3 .231164 231166  0.230617 2 39 (0,0,0)
. . . 4 .241808 241810  0.242562 3 38 (0,0,0)
PQDVR for theR coordinate. However, fqr consistency we will 5 558330 558331 0259286 4 37 (0.0.0)
still use the standard PODVR although it may not be the most 4 279508 279508 0.280788 5 36 (0,0,0)
efficient and accurate choice. 7 .305336 .305335 0.307068 6 35 (0,0,0)
In our calculations, the Chebyshev or Lanczos propagations g -gigggi -gigggg 8-28?%2 g ig ggrgv%
and FD analysis are separated completely. Although parallel ;"5 co0s 246260 0403568 1 40 (0.0.1)
Computatlons are employEd only in the propagatlon step, the 11 358167 358170 0.410630 2 39 (010’1)
FD analyses are performed using conventional nonparallel 12 .368656 368658 0.373962 8 33 (0,0,0)
architectures. Because of the communications and loading 13 .370658 370656  0.422399 3 38 (0,0,2)
balance issues mentioned above, the parallel computing model 14~ .380266 ~ .380267  0.438677 0 40  (0,1,0)
does not scale ideally withJ(+ 1) for even spectroscopic 380826 380826 0441106 1 40 0.1,0

symmetry orJ for odd spectroscopic symmetry. However, one
can achieve wall clock times (e.g., for even symmetry 30
HO, case) that are within about a factor of 5 df= 0
calculations (for the same iteration numbers). For nonparallel

a Other symbols are the same as those in Table 1.

TABLE 4: Selected Low Bound-State Energies for] = 40
and Odd Spectroscopic Symmetry from DS/LSFD, LHFD,
and J-Shifting Approximation 2

computing, the wall clock times will approximately be a factor

of 31 of J = 0 calculations. We note furthermore that in our DSILSFD  LHFD  Jshifing Ka Ko (v2v9)
calculations this scaling was achieved using just 8 cpus. 1 225158  .225160 0.223449 1 39  (0,0,0)
3.2. Bound-State EnergiesWe have employed both methods g :giigg? :gﬁggg 8:%222%; g gg gg’g’gg
described above, that is, the real Chebyshev LSFD method 4 558325 258326 0259286 4 36  (0.0.0)
incorporating the doubling scheme and the LHFD method, to 5 279508  .279508 0.280788 5 35 (0,0,0)
compute the bound-state energies for two chosen energy 6  .305336  .305335 0.307068 6 34  (0,0,0)
windows atJ = 30, 40, 50 for both spectroscopic symmetries. 7 335742 335741 0338126 7 33  (0,0,0)
The first energy window is for the lowest bound-state energies g gggigg 'ggéi‘;? 8'288233 % gg (0,0,1)
. . . (0,0,1)
from —0.08 to 0.92 eV. Here the zero on the energy scale refers 17 33307 368810 0.373962 8 32 (0,0,0)
to the ground-state energy of HCdor J = 0, which is 11 .370658  .370656 0.422399 3 37  (0,0,1)
—2.015861 eV relative to the H O, dissociation limit. This 12 .384935 384937 0.441106 1 39 (0,1,0)

energy window is relatively easy to converge, and 100 000
Chebyshev iterations are sufficient to converge all of the bound
states within the window. In Tables—b we have listed the

a Other symbols are the same as those in Table 1.

potential energy surfaces have been employed in this work and

selected lowest bound-state energies from both even and oddn Bunker et al.’s work, the agreements between them on the
spectroscopic symmetry calculations for comparison. In these whole are still satisfactory, especially for the lowest part of the
tables, the second and third columns represent the exact quanturspectrum. Here we need to mention that DMBE IV PES tends
mechanical results from real Chebyshev and Lanczos methodsto predict lower vibrational energy levels than the experimental
respectively. Inspection of the energies shows that the agreementesults, see, for example, ref 67. Also, in Bunker et al.’s work
between them is quite satisfactory and for most of the energiesthe Renner effect and well spitorbit coupling have been
5—6 digits of relative accuracy have been achieved. For the included, and in our comparison only the energy levels from
low-lying bound states of th8 = 30 (even symmetry) case, theirJ = 30 + Y/, calculations are considered.

we can also compare our calculations with Bunker et al.’'s  To test theJ shifting and helicity-conserving approximations
variational results® (also from private communications). Note for such highJ values, we have performed thkshifting
that the units in Bunker et al.’s results have been changed fromapproximation calculations using Bowman et al.’s adiabatic
cm! to eV to facilitate the comparison. Given that different rotation metho®f for the lowest bound-state energidsshifting
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TABLE 5: Selected Low Bound-State Energies forJ = 50
and Even Spectroscopic Symmetry from DS/LSFD, LHFD,
and J-Shifting Approximation @

n  DS/SFD LHFD Jshifing Ka Ke (viv2vs)
1 337633 .337636 0.343722 0 50  (0,0,0)
2 337923 337925 0346111 1 50  (0,0,0)
3 353452 353455 0353278 2 49  (0,0,0)
4 362818  .362821 0365223 3 48  (0,0,0)
5 379279 379281 0381947 4 47  (0,0,0)
6 400257 400258 0.403449 5 46  (0,0,0)
7 425905 425906 0.429729 6 45  (0,0,0)
8 456121 456120 0.460787 7 44  (0,0,0)
9 462009 462013 0550546 0 50  (0,0,1)
10  .462292 462296 0.552900 1 50  (0,0,1)
11 477640 477644 0559962 2 49  (0,0,1)
12 486861  .486864 0.496624 8 43  (0,0,0)
13 490829 490828 0571732 3 48  (0,0,1)
14 499818  .499819 0592906 O 50  (0,1,0)
15 500070 500071 0595335 1 50  (0,1,0)

a Other symbols are the same as those in Table 1.

TABLE 6: Selected Low Bound-State Energies forJ = 50
and Odd Spectroscopic Symmetry from DS/LSFD, LHFD,
and J-Shifting Approximation 2

n  DSILSFD  LHFD Jshifting K. K¢ (ruvavs)
1  .346874 346877 0.346111 1 49  (0,0,0)
2 349929 349932 0353278 2 48  (0,0,0)
3 .363344  .363347 0.365223 3 47  (0,0,0)
4 379251 379252 0.381947 4 46  (0,0,0)
5 400258  .400259 0.403449 5 45  (0,0,0)
6  .425905 425906 0.429729 6 44  (0,0,0)
7 456121 456121 0.460787 7 43 (0,0,0)
8 471153 471157 0552900 1 49  (0,0,1)
9 474154 474158 0559962 2 48  (0,0,1)
10 487383  .487386 0.496624 8 42  (0,0,0)
11 490829 490828 0571732 3 47  (0,0,1)
12 503052  .503055 0.595335 1 49  (0,1,0)

a Other symbols are the same as those in Table 1.

and adiabatic rotation approximations are very similar in spirit,
and in this paper we have not distinguished them in the
discussions). Rotational consta#tsB, andC used in this work
are taken from the experimental results of Burkholder et’al.,
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Another approximation used widely in dynamical calculations
is the so-called helicity-conserving approximatf8i§? In the
helicity-conserving (HC) approximation (also known as cen-
trifugal sudden approximation), the Coriolis coupling blocks,
Hoo+1, in €q 3 are simply ignored and the diagonal block,
l:IQ'Q, in eq 2 can be solved independently for edehat a
fixed J value. A common characteristic in these different levels
of approximations is whether a good quantum numi§er,
exists, and in this paper we do not perform helicity-conserving
calculations explicitly, instead we will make a relatively easy
comparison of the energy levels with the sakigbut from
different spectroscopic symmetries; for example, Table 1 with
Table 2, Table 3 with Table 4, and Table 5 with Table 6, to see
whetherQ is a good quantum number. Thus, we can judge
whether the helicity-conserving approximation is a good ap-
proximation. If the calculated energies from even and odd
symmetries are nearly the same for the sa&&heomponent,
then Q is a good quantum number. This is because near
degeneracy exists for the sanf@ components from both
symmetries. Therefore, helicity-conserving calculations or even
much simpler adiabatic rotation approximations should be
accurate, which will save quite a lot of computational time. By
such a comparison of the corresponding energy levels, we can
see that whenever the energy levels become close, the mixing
of differentQ2 components is more serious, and the differences
of the corresponding energy levels become large. For example,
for the first two lowest energy levels witk; = 0 and 1 in each
(v1,v2,v3) band, because of their closeness in energy, the mixing
of these twa2 components is more severe, and the differences
of the corresponding energy levels become large. Indeed,
through comparison of the energy levels with the sétpéut
from different spectroscopic symmetries, we can judge whether
Q is a good quantum number and thus determine whether
helicity-conserving or even the much simpler adiabatic rotation
approximation are good approximations, that is, if the calculated
energies from even and odd symmetries are nearly the same
for the same2 component, the® is a good quantum number.
Unfortunately, for the H@ system this is not true for most
bound-state levels, in particular for highvalues as discussed

which are (20.3565236, 1.1180340, and 1.05631924) for the I this paper. This indicates that for the ki§ystem the Coriolis
(0,0’0) band, (20309223, 10741278, and 1573005) for the COUleng IS very |mp0rtant and various apprOXImatlonS mlght
(0,0,1) band and (20.957744, 1.0832341, and 1.650704) for theCaUSe inaccuracies; thus, exact quantum mechanical calculations

(0,1,0) band (unit in cmt). For these lowest bound states, a

are needed. Also, it is interesting that the results of these

spectroscopic assignment has also been made (see the last thré@PProximations cannot, in and of themselves, tell us whether

columns). From Tables-16 we can see that for the first two
lowest energy levels witK, = 0 and 1 in (0,0,0) band, because
of their closeness in energy, the mixing of differef
components of the wave function fdr> 0 is apparent, and
J-shifting results are not very close to the quantum results.
However, for the following six energy levels wiky, = 2—7 in

the (0,0,0) bandJ-shifting results are very close to exact
quantum results. For these energy levels, dh&hifting ap-
proximation is indeed very good, given that the vibrational

the approximations are valid or not; such analysis relies on either
accurate quantum mechanical calculations or experimental
results.

The second energy window we have chosen is close to and
above the dissociation threshold from 2.0958 to 2.1758 eV. The
computational demands are progressively greater as one moves
up into denser regions of the spectrum. In the calculations
reported in this paper, we have used the largest Chebyshev
iterations of more than 1 000 000 for even symmetry to converge

energy levels from DMBE IV PES are normally lower than the these high-lying bound states. We believe that the iteration

experimental results and that fhshifting approximation we
have used experimental rotational constaitB, andC in this

number used in this paper is one of the largest published, and
interestingly the damped Chebyshev recursion proves to be very

work. For the following energy levels, because of more serious stable. In tables 79, we have listed selected 60 high-lying

mixing in different band levels, that is, in (0,0,0), (0,0,1) and
(01,0), J-shifting approximation becomes less accurate in

bound states for even symmetry df= 30, 40, and 50 from
DS/LSFD calculations. For the high-lying bound states, we have

predicting the ro-vibrational energy levels. We note that even failed to assign them unambiguously (indeed even forJtke

in this range of mixing energy levelsshifting still predicts

0 case, one cannot make the assignments for the high-lying

much better results for the (0,0,0) band than for the other two bound states of the Hystem because of its essentially chaotic
bands, possibly because of more accurate rotational constantgharacteristic). For example, we have analyzed the high-lying

A, B, andC or less serious mixing for this band.

bound-state energies near the dissociation threshold Jrem
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TABLE 7: Selected High-Lying Bound-State Energies from TABLE 8: Selected High-Lying Bound-State Energies from
DS/LSFD Calculations for J = 30 and Even Spectroscopic DS/LSFD Calculations for J = 40 and Even Spectroscopic
Symmetry? Symmetry?
n E, n E, n E, n E,
1 2.097479 31 2.104023 1 2.097620 31 2.104973
2 2.097618 32 2.104259 2 2.097828 32 2.105265
3 2.097808 33 2.104390 3 2.098278 33 2.105369
4 2.098177 34 2.104621 4 2.098372 34 2.105674
5 2.098459 35 2.104771 5 2.098522 35 2.106027
6 2.098578 36 2.105079 6 2.098745 36 2.106264
7 2.098621 37 2.105193 7 2.098940 37 2.106496
8 2.098820 38 2.105440 8 2.099152 38 2.106748
9 2.099273 39 2.105529 9 2.099396 39 2.107273
10 2.099590 40 2.105618 10 2.099708 40 2.107407
11 2.099644 41 2.105866 11 2.099916 41 2.107501
12 2.099652 42 2.106084 12 2.100081 42 2.107845
13 2.100109 43 2.106178 13 2.100303 43 2.108027
14 2.100455 44 2.106442 14 2.100472 44 2.108506
15 2.100716 45 2.106813 15 2.100798 45 2.108627
16 2.100817 46 2.106981 16 2.101049 46 2.108783
17 2.101054 47 2.107115 17 2.101248 47 2.108853
18 2.101105 48 2.107307 18 2.101565 48 2.109204
19 2.101448 49 2.107594 19 2.101654 49 2.109601
20 2.101639 50 2.107771 20 2.102025 50 2.109859
21 2.101846 51 2.108062 21 2.102200 51 2.110198
22 2.102029 52 2.108186 22 2.102340 52 2.110376
23 2.102114 53 2.108259 23 2.102825 53 2.110858
24 2.102455 54 2.108442 24 2.103106 54 2.110894
25 2.102652 55 2.108678 25 2.103567 55 2.111140
26 2.102863 56 2.108882 26 2.103712 56 2.111267
27 2.103016 57 2.108983 27 2.104019 57 2.111459
28 2.103259 58 2.109160 28 2.104398 58 2.111635
29 2.103532 59 2.109577 29 2.104651 59 2.111898
30 2.103734 60 2.109759 30 2.104860 60 2.112042
aThe ro-vibrational ground-state energy was calculatee?a015861 a Other symbols are the same as those in Table 7.
eV relative to the dissociation limit of H O,, which is referred to as ] ] ]
the zero energy point. All energy units are in eV. TABLE 9: Selected High-Lying Bound-State Energies from
DS/LSFD Calculations for J = 50 and Even Spectroscopic
30 calculations for both even and odd spectroscopic symmetries,Symmetrya
respectively (the results for the high-lying bound-state energies n En n En
for odd symmetry are not shown here, and they can be obtained 1 2.095940 31 2.103903
from the authors upon request). Although only several of them 2 2.096289 32 2.104196
can be assigned tentatively, most of them cannot be assigned i g-gg?ﬁg 2431 5-183222
with confidence. This indicates that the mixing of differémt 5 5097477 35 2‘104210
components is so strong th&X is no longer a good quantum 6 2097537 36 2104802
number even qualitatively. Of course, the difficulties in assign- 7 2.097967 37 2.105254
ment also arise from the fact that the spacings between these 8 2.098137 38 2.105771
high-lying bound states are becoming smaller and smaller. For 9 2.098375 39 2.106014
this system, it seems that HC calculations or adiabatic rotation 10 2.098567 40 2.106200
. . . 11 2.098758 41 2.106492
approximations can give reasonably accurate results only for 12 2098945 42 2106592
some low bound-state energies. This observation is consistent 13 2.099091 43 2.106832
with the previously reported > O total reaction probability 14 2.099165 44 2.106979
calculations for this system, which show that for He 15 2.099851 45 2.107098
Coriolis coupling is important and cannot be ignof@thterest- ° 5o pe ST
ingly, this situation is in contrast to the;8 and HOCI system, 18 5100804 48 5107862
for which HC or AR is a good approximatidi§.1-92 19 2101049 49 2108247
20 2.101120 50 2.108479
4. Conclusions 21 2.101236 51 2.108788
. . . . 22 2.101404 52 2.109068
In this paper the doubling scheme/low storage filter diago- 23 2101670 53 2.109301
nalization (DS/LSFD) method as well as the Lanczos homo- 24 2.101739 54 2.109648
geneous filter diagonalization (LHFD) method have been applied 25 2.102167 55 2.109788
to the very challenging case of HOwith total angular 26 2.102411 56 2.109908
momentumJ = 30, 40, and 50 to compute low- as well as high- % g%g%gi g; %'ﬂgggg
lying bound state energies. Both methods have proved stable 59 2103294 59 2110621
over very large numbers of iterations and are capable of 30 2.103631 60 2.110859

computing the entire spectrum from a single recursion. Regard-
ing the relative efficiencies, the two iterative methods are
roughly comparable, with the DS/LSFD method being margin- the DS/LSFD and LHFD methods are in good agreement and
ally favored. For the low-lying bound states, the results from they are in general agreement with the variational results

a Other symbols are the same as those in Table 7.
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reported previously for thd = 30 even-symmetry case. Using h(37) Zr:]u’ W.; Huang, Y.; Kouri, D. J.; Chandler, C.; Hoffman, D. K.
; Chem. Phys. Lettl994 217, 73.

these quantum.resuns’ W‘? .have teSte.d the widely used ap (38) Kouri, D. J.; Zhu, W.; Parker, G. A.; Hoffman, D. Khem. Phys.

proximateJ-shifting and helicity-conserving methods for such | o 1995 233 395,

high J values for the HQ system. The results indicate that (39) Parker, G. A.; Zhu, W.; Huang, Y.; Hoffman, D. K.; Kouri, D. J.

whenever the energy levels become close the mixing of different Comput. Phys. Commut996 96, 27.

Q components of the wave function is more serious and the (40) Mandelshtam, V. A.; Taylor, H. . Chem. Physl995 103 2903.

- - s . L 41) Mandelshtam, V. A.; Grozdanov, T. P.; Taylor, H. 5.Chem.
predictions fromJ-shifting or helicity-conversing approximations Ph§5.1995 103 10074. Y

will be less reliable. For high-lying bound states, unambiguous  (42) Mandelshtam, V. A.; Taylor, H. S. Chem. Phys1995 102, 7390.
assignment becomes impossible becasue of stronger mixing as (43) Chen, R.; Guo, HJ. Chem. Phys1996 105, 3569.

well as the closeness of the energy levels. For the siGtem, Eigg E;m;s-hg?mB%'irX-KTU;ﬂ,Io(f-HGJS- %Ein Eﬂy;lggéillo%asggg
the Coriolis coupling is very important ard is no longer a ' (46) Goldfield, E. M. M’eijer},/ AL H MO, Chen¥ Phy‘SZOOQ 13
good quantum number such that exact quantum mechanicaligss,

calculations are needed. Such rigorous quantum calculations (47) Piermarini, V.; Balint-Kurti, G. G.; Gray, S. K.; Gogtas, F.; Lagana,
have only recently become possible through both the parallel A-; Hernandez, M. LJ. Phys. ChemA 2001, 105, 5743.

; L (48) Carroll, T. E.; Goldfield, E. MJ. Phys. Chem. 2001, 105, 2251.
computing strategy and the development of more efficient (49) Kroes, G.-J.: Neuhauser, D. Chem. Phys1996 105 8690,

methodology. (50) Kroes, G.-J.- Wall, M. R.; Pang, J. W.; Neuhauser JDChem.
Phys.1997, 106, 1800.
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