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The Lanczos homogeneous filter diagonalization method and the real Chebyshev filter diagonalization scheme
incorporating doubling of the autocorrelation functions have been employed to compute the HO2 ro-vibrational
states for high total angular momenta,J ) 30, 40, and 50. For such computationally challenging calculations,
we have adopted a parallel computing strategy to perform the matrix-vector multiplications. Low-lying bound
states and high-lying bound states close to the dissociation threshold are reported. For low-lying bound states,
a spectroscopic assignment has been attempted and the widely used approximateJ-shifting method has been
tested for this deep-well system. For high-lying bound states, the attempted spectroscopic assignments as
well as theJ-shifting approximation fail because of very strong Coriolis mixing, indicating that the Coriolis
couplings are important for this system.

1. Introduction

Exact nonzero total angular momentum (J > 0) calculations
are essential in fully understanding quantum reaction dynamics
and in correctly simulating molecular spectroscopy. For ex-
ample, in unimolecular dissociation, to understand the temper-
ature variation of rate constants, it is important to implement
manyJ > 0 calculations as accurately as possible. In bimolecular
reactions, the detailed cross sections can only be obtained after
summing over many manifolds of scattering matrix elements
associated with nonzeroJ. When assigning experimental mo-
lecular spectra, it is necessary to compute exactly the ro-
vibrational states involved. However, theseJ > 0 calculations
are still very challenging even for triatomic reactions, especially
when dealing with complex forming systems. The major reason
for this situation is the so-called “angular momentum catastro-
phe”:1 manyJ > 0 calculations have to be performed, and the
size of the Hamiltonian matrix increases linearly withJ. For
these nonzeroJ calculations, it is apparently impractical to
employ conventional direct diagonalization methods because of
the extensive computer core memory needed. Several sophis-
ticated basis-set contraction schemes2,3 do exist, but because of
their unfavorable scaling they are limited to optimized basis
sets ofN < 10 000. Variational approaches can be used to
compute the low bound states accurately, but for high-lying
bound states, convergence becomes difficult with the increasing
size of the basis set.4,5 Iterative methods such as the real
Chebyshev iterative method6-8 and the Lanczos method9,10 are
well suited to solving this type of large-scale eigenvalue problem
and in recent years have become increasingly popular. The
preconditioned inexact spectral transformation method devel-
oped recently by Carrington and co-workers is a promising
variant of these methods that can reduce the required number
of iterations substantially at high energies.11-13 Combination
methods such as the two-layer Lanczos iteration approach
introduced by Yu14 and the contracted basis-iterative method
introduced by Carrington and co-workers15 also represent

promising recent numerical developments. These methods are
useful, especially for large basis sets, because they do not require
explicit storage of the Hamiltonian matrix. Rather, only the
multiplication of the Hamiltonian onto a vector is required.
When combined with a sparse representation of the Hamiltonian,
such as a discrete variable representation (DVR),16 both memory
and CPU time can be reduced dramatically.

Lanczos methods exploit the advantages of the tridiagonal
structure of the Lanczos subspace Hamiltonian, which is gen-
erated by the iterative Lanczos algorithm.9 Although the Lanczos
algorithm has been used commonly for matrix diagonalization10

and short-time propagations,17 recent work in the Brisbane lab
has focused on exploring more general applications of the
Lanczos representation, including spectral densities,18-20 filter
diagonalization for high-lying bound states and resonances,21-26

partial resonance widths in unimolecular decay,27 and state-to-
state reactive scattering.28,29An important feature of these newer
Lanczos implementations is that all physically relevant informa-
tion is extracted from within the Lanczos representation. This
allows a single Lanczos iteration of arbitrary length to be utilized
for the propagation rather than a sequence of short iterations.
We note that for scattering or resonance applications the
absorbing boundary conditions are imposed within the Lanczos
algorithm by incorporation of a complex absorbing potential
(CAP) into the Hamiltonian. Consequently, the Lanczos itera-
tions are complex and yield a complex-symmetric tridiagonal
representation of the Hamiltonian, although as is well known
(e.g., ref 13) the complex-symmetric Lanczos approach is
numerically less stable than its real or Hermitian counterparts.
Significant progress has also been made recently in the search
for a real Lanczos subspace method capable of computing state-
to-state reactive scattering probabilities.30-32

Another powerful iterative method is the real Chebyshev
method, which is attractive from both computational time and
computer memory points of view. Its origin lies with the early
work of Tal-Ezer and Kosloff,33 in which the evolution operator
exp(-iĤt/p) is expanded in terms of Chebyshev polynomials.
Subsequently, very important developments were made by
several research groups. Kouri and co-workers34-39 derived a
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new time-independent (TI) wave packet Lippmann-Schwinger
equation and presented Chebyshev expansion expressions for
both the Green operator and the Dirac delta function. Man-
delshtam and Taylor40-42 introduced a real damping scheme into
the Chebyshev recursion, which made the real wave packet
method possible for dissipative systems. The real Chebychev
propagation method can be viewed in an alternative way as a
modification of the time-dependent Schro¨dinger equation. In
this respect, two related (discrete/continuous time) forms of the
modified equations have been proposed by Chen and Guo43 and
more generally by Gray and Balint-Kurti.44 These various real
wave packet approaches have been applied successfully to
different fields such as bound- or resonance-state calcula-
tions,6,7,45reactive scattering,46-48 and surface scattering.49,50For
bound-state calculations, it is possible to exploit the doubling
scheme to compute autocorrelation functions, which will double
the efficiency of the real Chebyshev iteration. For resonance
computations, Li and Guo intuitively proposed that the scheme
of doubling Chebyshev correlation functions should still be
valid,51 even if the damped Chebyshev recursion is adopted,
with numerical validation of their proposal for several molecular
systems.51,52 Recently, Neumaier and Mandelshtam derived a
pseudo-time Schro¨dinger equation and provided rigorous proof
that an exact doubling formula exists for damped Chebyshev
propagation.53 It is Neumaier and Mandelshtam’s newest
doubling scheme, in combination with their low storage filter
diagonalization strategy6 (DS/LSFD), that we will employ to
calculate the challengingJ ) 30, 40, and 50 low- as well as
high-lying bound states of the HO2 system in this paper. The
most important advantage associated with this approach is that
one can employ a real algorithm with a single, extended
Chebyshev vector recursion. The doubling scheme51,53 for
calculating Chebyshev correlation functions leads to further
efficiency in comparison with propagation of a complex wave
packet. Of course, the computational tasks are still too heavy
using a conventional single-processor calculation for the high
angular momentum cases studied in this work, in particular for
the high-lying bound states. Thus, we adopt a parallel computing
model herein.

The reasons for employing parallel computing are twofold.
On one hand, the CPU time required to compute the high-lying
bound states for this system is substantial, partly because of
the deep potential well corresponding to the HO2 complex,
which supports hundreds of bound states for theJ ) 0 case. As
J increases, the number of bound states will increase linearly
with J, which makes the convergence more difficult. On the
other hand, the storage requirement of the potential matrix and
overlapping integrals also increases linearly withJ. Thus, with
typical memory available on current cluster machines (i.e., a
few GBytes per node), the employment of parallel computing
strategies becomes unavoidable for higherJ values. Recently,
several groups have begun to exploit the power of parallel
computing in performing the rigorousJ > 0 quantum dynamics
calculations in TD wave packet methods and in sequential
diagonalization and truncation methods.54,55 In this paper, we
show how such parallel computations make it possible to
compute the dense ro-vibrational state manifold with compu-
tational times and storage requirements comparable to theJ )
0 case. Our specific implementation involves a message-passing
interface (MPI)56 inserted in our local Fortran programs utilizing
the real Chebyshev and Lanczos methods.

We note that although the present paper deals only with bound
states at large angular momenta our calculations are carried out
with explicit incorporation of dissipative boundary conditions

(i.e., the complex-symmetric Lanczos algorithm and the real
damped Chebychev propagation) because this allows the output
of the calculations to be analyzed further to investigate resonance
structure above the dissociation threshold. Such analysis of the
continuum part of the spectra is, however, beyond the scope of
the current paper.

The HO2 system is very important in combustion chemistry
and atmospheric chemistry57 and hence has been studied
extensively from both theoretical and experimental perspectives.
However, even this seemingly simple system involving only
three atoms turns out to be very difficult to model quantum
mechanically. Unlike the H3 or H2F (or their isotopes) systems,
see, for example, refs 58-60, the agreement between theory
and experiment, and even among different theories and different
experiments, has not yet reached a quantitative level for HO2.
The reader is referred to Wolfrum for some detailed compari-
sons.61 The potential energy surfaces (PES) used most are those
by Melius and Blint,62 Varandas and co-workers,63 Kendrick
and Pack,64 and Troe and co-workers65,66(we note that accurate
ab initio surfaces further adjusted to fit experimental spectro-
scopic data have been reported4 and that very recently a new
global ab initio PES for the HO2 ground state has been
developed67). Although most of the calculations have focused
on theJ ) 0 case because of obvious computational difficulties,
J > 0 calculations have begun to appear in recent years. Among
them, Goldfield’s group46,68,69has performed exact calculations
of the initial-state-resolved reaction probability at severalJ
values for the bimolecular reaction H+ O2 f OH + O. J > 0
calculations have been reported for the low-lying bound states
by Wu and Hayes.70 Also notable is the work of Bunker et al.
in which a variational method has been employed to converge
bound states up to 1.0 eV above the zero point level for some
high J values (refs 4 and 5 and private communications). We
have recently utilized the Lanczos homogeneous filter diago-
nalization (LHFD) method as well as the real Chebyshev method
to compute bound states forJ ) 1-6, 10, and 20 as well as the
resonance eigenvalues, which yield the quantum-specific rate
constants,k(E,J).71-73 Some comparisons have been presented
therein between the quantum rates and Troe et al.’s statistical
results.65,66The range of the angular momenta that are relevant
to the thermal rate up to 5000 K is fromJ ) 0 to at leastJ )
60.65

Because of the computational challenges of the exact calcula-
tions, approximate quantum methods such as adiabatic rotation
(AR),74 J-shifting,75 and helicity-conserving (HC)76 approxima-
tions are used commonly for nonzeroJ calculations. As
important as exact quantum methods may be, approximations
may become unavoidable for complex and/or large systems.
Therefore, it is of interest to compare the exact quantum results
with different approximate methods. For complex-forming
reactions such as the HO2 system, Coriolis coupling is important
because of the large amount of flexibility in the molecule at
high energies, and such approximations might cause significant
inaccuracies. Another motivation of this paper is to test these
approximations, for example,J-shifting, for such highJ values
and to investigate when and how it fails. The key issue in these
approximations is whether a reasonably good quantum number,
Ω, associated with the projection of total angular momentum
on a body fixed axis exists. If the substates,Ω , of the wave
function for J > 0 are heavily coupled, then the Coriolis
coupling between the states cannot be ignored and any attempts
to assign the helicity quantum number,Ω, will fail. We will
examine this issue by comparing the exact quantum results with
a rationally implementedJ-shifting approximation and a helicity
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quantum number,Ω , assignment for both spectroscopic sym-
metry calculations of bound states. If this assignment is
successful, then the approximate calculations may be applied,
otherwise the Coriolis coupling should not be ignored and exact
quantum methods have to be used.

The remainder of this article proceeds as follows. In Section
2 we describe the theoretical methods needed to characterize
bound states for nonzero total angular momentum, together with
a parallel computing model in brief. In Section 3 we provide
computational details and then present the results ofJ ) 30,
40, and 50 bound-state calculations performed on the HO2

system. Detailed comparisons with previous work for the lower
bound-state manifold withJ ) 30 as well as the comparisons
with J-shifting approximation will also be given in Section 3.
Section 4 concludes.

2. Methodology

2.1. Representation.The three internal Jacobi coordinates
(R,r,γ) are described with discrete variable representations
(DVRs), whereas the three Eulerian angles (θ,φ,ψ) are described
with a finite basis set.77-79 This procedure is very efficient
because the potential part of the Hamiltonian matrix is diagonal,
which can reduce the memory requirement substantially. The
triatomic Hamiltonian in Jacobi coordinates in a body fixed
frame is given by

where orbital angular momentum,l̂ 2 ) (Ĵ - ĵ)2 ) Ĵ2 + ĵ 2 -
2Ĵ‚ĵ. To reduce the six-dimensional (6D) Hamiltonian to a four-
dimensional (4D) one for each singleJ value, we use a
symmetric top eigen function to expand the total wave function.
Multiplying the Hamiltonian on the left side by〈DMΩ

J (φ,θ,ψ)|,
one can obtain the coupled equations of motion. HereJ is the
total angular momentum quantum number, and quantum number
M is the projection of total angular momentum onto the space-
fixed zaxis. The derivations use the basic definitions of Wigner
D functions and some integral formulas. Although the details
of the derivation are very tedious, we will only give the final
results of the coupled equations as follows

and

with m ) 0 for ĤΩ,Ω+1 andm ) 1 for ĤΩ,Ω-1. Such coupled
equations can be represented in DVR

with

In eq 4, we have usedΩ-dependent DVR for theγ coordinate,
which is obtained by either diagonalizing the coordinate operator
(x ) cosγ) matrix

or by a Gauss-Jacobi quadrature scheme

HereΘj
Ω(γ) is the associated Legendre polynomial,W(x) ) (1

- x2)Ω is the weight function, and

In the Gauss-Jacobi quadrature scheme, the transformation
matrix is set up according to

Hereλ is used to label the DVR in theγ coordinate, andxλ and
ωλ are the quadrature points and weights, respectively, which
can be obtained from standard methods.80 In the direct diago-
nalization scheme, the DVR points and the transformation matrix
are simply the eigenvalues and the eigenvector matrix of the
coordinate operator matrix. We have compared the two DVR
schemes, and the DVR points as well as the transformation
matrix, T, from the two methods are nearly the same. ForR
and r coordinates, we have used potential-optimized DVR.81

The details of the DVRs will be given in Section 3.
2.2. Propagation. In the iterative Chebyshev method, the

basic propagation is a three-term recursion. In their modified
version of Chebyshev propagation, Mandelshtam and Taylor40-42

proposed a real damped Chebyshev polynomial recursion to
impose the outgoing boundary conditions. Because the damping
operator is introduced in the recursion, the doubling property
of the original Chebyshev recursion to compute the autocorre-
lation functions would seem at first glance to be inapplicable.
However, as pointed out by Li and Guo,51 the original doubling
scheme can still be adapted to calculate narrow resonances,
albeit in an approximate way. Neumaier and Mandelshtam53

subsequently provided a rigorous proof that an exact doubling
scheme exists for damped Chebyshev propagation. The new
damped Chebyshev propagation then becomes
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Hereê0
Ŵ ) Φ0 is the initial real random wave packet, andê1

Ŵ )
0. D̂(Ŵ) ) 1 + 2Ŵ, andŴ is the absorbing potential.Ĥnorm )
(Ĥ - Hh )/∆H with Hh ) 0.5(Hmax + Hmin ) and∆H ) 0.5(Hmax

- Hmin ). The new doubling formula is as follows

where the (•|•) denotes the complex nonconjugate inner product.
Such a doubling scheme can allow us to save the number of
Chebyshev iterations by a factor of 2, which is especially useful
for the heavy computational tasks such as the highJ value cases
in this paper. The autocorrelation functions need to be stored
in the Chebyshev propagation for later FD analysis.

Similarly, in the Lanczos iteration, we choose a normalized,
randomly generated initial vector,V1 * 0, and setâ1 ) 0 and
V0 ) 0. Then we use the basic Lanczos algorithm for complex-
symmetric matrices82

to project the non-Hermitian absorbing potential augmented
Hamiltonian into a Krylov subspace. TheM × M tridiagonal
representation of the Hamiltonian,TM, has diagonal elements,
Rk ) (Vk|Ĥ′|Vk), and subdiagonal elements,âk ) (Vk-1|Ĥ′|Vk).
Note that a complex-symmetric inner product is used (i.e., bra
vectors are not complex conjugated). Again, the two vectors,
{R} and {â}, are stored in Lanczos iterations for later FD
analysis to extract physical information such as bound-state or
resonance quantities.

Though conceptionally simple, the propagation is the most
time-consuming part of the calculation, and Hamiltonian
matrix-vector multiplications will be repeated for many times.
We use MPI to perform parallel computation for the matrix-
vector multiplications. For even spectroscopic symmetry, the
4D matrix-vector multiplication looks like

with, φΩ ) HΩ,Ω-1ψΩ-1 + HΩ,ΩψΩ + HΩ,Ω+1ψΩ+1. For odd
spectroscopic symmetry, the Hamiltonian matrix is the same
exceptΩ ) 1, 2, ...,J. The spectroscopic symmetry parity is
defined as (-1)J+p, with p being the parity of the total 6D wave
function under inversion of the space-fixed nuclear coordinates.
We adopt a natural way to distribute the problem with respect
to theΩ blocks, which makes the calculations of autocorrela-
tions or{R} and{â} much easier and necessitates only minimal
modifications of the code for parallel computing. We assign
one processor as master processor (ID) 0), which is used to
write autocorrelation functions or{R} and{â} and assign all
other processors as working processors for performing the
matrix-vector multiplications for differentΩ components. Our
implementation has the flexibility that any number of cpus (2
e n e J + 2) in a cluster machine can be employed. According
to the Coriolis coupling rules, only two nearest-neighborΩ
components need to communicate, and we use the MPI_SEND
and MPI_RECEIVE commands to carry out such communica-
tions. In this way the data transfer between processors is not
too heavy. We distribute the work load as equally as possible
over processors. However, becausejmin is different for eachΩ

component, butjmax is the same, that is, the DVR size forγ is
different for eachΩ component, and for the highest or the lowest
Ω components, only one Coriolis coupling term is required;
thus, the load for each processor is still not perfectly balanced.
Indeed, in distributed computing, there is always a tradeoff
between load balance and complexity in coding. Our principle
is that strict balance is not absolutely necessary, but for the
present application the balancing works out quite well in general.
We note that other parallel models have been used to calculate
ro-vibrational states. For example, Wu and Hayes70 defined a
conceptional 3D mesh whereΩ is used as one of the indices,
Mussa and Tennyson55 have employed a two step procedure,
and Eggert et al.83 described a fine granularity parallel Lanczos
calculation in which a pseudo spectral split Hamiltonian scheme
has been employed to implement the action of the Hamiltonian
on the wave function. Here different parallel strategies are
employed to suit the different methods and different machines.

2.3. Extraction of Relevant Information. In the LSFD
method, given the discrete correlation function,ck, one can
employ evolution operator, Uˆ , to set up a small-sized generalized
eigen equation.6 Solution of the generalized eigen equation will
give all of the information for both bound states and resonances.
The reader is referred to Mandelshtam and Taylor’s work for
more details.6,7 In the LHFD method, we perform filter
diagonalization within the Krylov subspace representation to
extract the bound and resonance information for any chosen
energy windows. A key issue in LHFD is solving the homo-
geneous linear system by using an efficient backward three-
term substitution recursion. The details of LHFD have been
given previously.25,27

3. Results

3.1. Computational Details for the HO2 System. The
triatomic HO2 Hamiltonian matrix was set up in terms of
reactant Jacobi coordinates, and the HO2 DMBE IV PES63 was
employed as we have done previously forJ ) 0-6, 10, and 20
bound-state and resonance calculations.25-27,71-73 For the two
radial coordinates, a potential-optimized DVR81 (PODVR) was
utilized to reduce the size of the Hamiltonian matrix. For theR
coordinate, we have usedNR ) 110 PODVR points, which were
contracted from 315 evenly spaced primitive sinc DVR points84

spanning the range from 0.5 a0 to 11.0 a0 with the one-
dimensional reference potential,V(R,re,θe). Similarly, for ther
coordinate,Nr ) 50 PODVR points were obtained from 150
primary DVR points spanning the range from 1.3 a0 to 5.0 a0
using the reference potential,V(Re,r,θe). For the γ variable,
Ω-dependent symmetry-adapted DVR functions, defined by
correspondingly associated Gauss-Jacobi quadrature points,
were employed to take account of the odd O-O exchange parity.
Another kind of symmetry originated from the WignerD
functions; that is, spectroscopic symmetry, has also been
considered. The resulting direct product basis set was further
contracted by discarding those points whose potential energies
were higher than the cutoff energy,Vcutoff ) 4.016 eV, resulting
in the final basis size of approximately 110 700(J + 1) for even
spectroscopic symmetry and approximately 110 700× J for odd
spectroscopic symmetry. This basis-set size has been tested
carefully for convergence for theJ ) 0 case and is then carried
over to theJ > 0 cases. For example, forJ ) 0 we have doubled
the grid size for the angular coordinate while keeping the other
two (R,r) grid sizes fixed and found that only the sixth digit of
bound-state energies varies. Hence, the degree of convergence
with respect to basis set parameters is on the order of five digits.
We note the issue raised in ref 85 of using an equilibrium value

c2k ) (êk
Ŵ|êk

Ŵ) - (êk+1
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PODVR for theRcoordinate. However, for consistency we will
still use the standard PODVR although it may not be the most
efficient and accurate choice.

In our calculations, the Chebyshev or Lanczos propagations
and FD analysis are separated completely. Although parallel
computations are employed only in the propagation step, the
FD analyses are performed using conventional nonparallel
architectures. Because of the communications and loading
balance issues mentioned above, the parallel computing model
does not scale ideally with (J + 1) for even spectroscopic
symmetry orJ for odd spectroscopic symmetry. However, one
can achieve wall clock times (e.g., for even symmetryJ ) 30
HO2 case) that are within about a factor of 5 ofJ ) 0
calculations (for the same iteration numbers). For nonparallel
computing, the wall clock times will approximately be a factor
of 31 of J ) 0 calculations. We note furthermore that in our
calculations this scaling was achieved using just 8 cpus.

3.2. Bound-State Energies.We have employed both methods
described above, that is, the real Chebyshev LSFD method
incorporating the doubling scheme and the LHFD method, to
compute the bound-state energies for two chosen energy
windows atJ ) 30, 40, 50 for both spectroscopic symmetries.
The first energy window is for the lowest bound-state energies
from -0.08 to 0.92 eV. Here the zero on the energy scale refers
to the ground-state energy of HO2 for J ) 0, which is
-2.015861 eV relative to the H+ O2 dissociation limit. This
energy window is relatively easy to converge, and 100 000
Chebyshev iterations are sufficient to converge all of the bound
states within the window. In Tables 1-6 we have listed the
selected lowest bound-state energies from both even and odd
spectroscopic symmetry calculations for comparison. In these
tables, the second and third columns represent the exact quantum
mechanical results from real Chebyshev and Lanczos methods,
respectively. Inspection of the energies shows that the agreement
between them is quite satisfactory and for most of the energies
5-6 digits of relative accuracy have been achieved. For the
low-lying bound states of theJ ) 30 (even symmetry) case,
we can also compare our calculations with Bunker et al.’s
variational results4,5 (also from private communications). Note
that the units in Bunker et al.’s results have been changed from
cm-1 to eV to facilitate the comparison. Given that different

potential energy surfaces have been employed in this work and
in Bunker et al.’s work, the agreements between them on the
whole are still satisfactory, especially for the lowest part of the
spectrum. Here we need to mention that DMBE IV PES tends
to predict lower vibrational energy levels than the experimental
results, see, for example, ref 67. Also, in Bunker et al.’s work
the Renner effect and well spin-orbit coupling have been
included, and in our comparison only the energy levels from
their J ) 30 + 1/2 calculations are considered.

To test theJ shifting and helicity-conserving approximations
for such high J values, we have performed theJ-shifting
approximation calculations using Bowman et al.’s adiabatic
rotation method86 for the lowest bound-state energies (J-shifting

TABLE 1: Selected Low Bound-State Energies forJ ) 30
and Even Spectroscopic Symmetry from DS/LSFD, LHFD,
Bunker et al.’s Variational Calculations, and J-Shifting
Approximation a

n DS/LSFD LHFD Bunker J-shifting Ka Kc (ν1,ν2,ν3)

1 .124642 .124642 .124498 0.125357 0 30 (0,0,0)
2 .125728 .125729 .125617 0.127746 1 30 (0,0,0)
3 .135318 .135319 .135005 0.134914 2 29 (0,0,0)
4 .146785 .146786 .146458 0.146859 3 28 (0,0,0)
5 .163396 .163396 .162959 0.163583 4 27 (0,0,0)
6 .184702 .184702 .184127 0.185085 5 26 (0,0,0)
7 .210661 .210659 .209911 0.211365 6 25 (0,0,0)
8 .241209 .241207 .240250 0.242423 7 24 (0,0,0)
9 .253944 .253947 .259379 0.284702 0 30 (0,0,1)

10 .255012 .255014 .260476 0.287056 1 30 (0,0,1)
11 .264490 .264492 .269912 0.294118 2 29 (0,0,1)
12 .275801 .275803 .275077 0.278259 8 23 (0,0,0)
13 .276284 .276281 .281334 0.305887 3 28 (0,0,1)
14 .285991 .285990 .296508 0.318344 0 30 (0,1,0)
15 .287061 .287061 .297621 0.320773 1 30 (0,1,0)

a The ro-vibrational ground-state energy was calculated at-2.015861
eV relative to the dissociation limit of H+ O2, which is referred to as
the zero energy point. All energy units are in eV. For these low bound
states, quantum numbers (Ka,Kc) and (ν1,ν2,ν3) are used to label the
energy levels.

TABLE 2: Selected Low Bound-State Energies forJ ) 30
and Odd Spectroscopic Symmetry from DS/LSFD, LHFD,
and J-Shifting Approximation a

n DS/LSFD LHFD J-shifting Ka Kc (ν1,ν2,ν3)

1 .129246 .129247 0.127746 1 29 (0,0,0)
2 .134702 .134703 0.134914 2 28 (0,0,0)
3 .146814 .146815 0.146859 3 27 (0,0,0)
4 .163395 .163395 0.163583 4 26 (0,0,0)
5 .184703 .184702 0.185085 5 25 (0,0,0)
6 .210660 .210659 0.211365 6 24 (0,0,0)
7 .241209 .241207 0.242423 7 23 (0,0,0)
8 .258503 .258505 0.287056 1 29 (0,0,1)
9 .263879 .263881 0.294118 2 28 (0,0,1)

10 .275937 .275832 0.278259 8 22 (0,0,0)
11 .276284 .276281 0.305887 3 27 (0,0,1)
12 .290950 .290950 0.320773 1 29 (0,1,0)

a Other symbols are the same as those in Table 1.

TABLE 3: Selected Low Bound-State Energies forJ ) 40
and Even Spectroscopic Symmetry from DS/LSFD, LHFD,
and J-Shifting Approximation a

n DS/LSFD LHFD J-shifting Ka Kc (ν1,ν2,ν3)

1 .218531 .218532 0.221060 0 40 (0,0,0)
2 .219106 .219127 0.223449 1 40 (0,0,0)
3 .231164 .231166 0.230617 2 39 (0,0,0)
4 .241808 .241810 0.242562 3 38 (0,0,0)
5 .258330 .258331 0.259286 4 37 (0,0,0)
6 .279508 .279508 0.280788 5 36 (0,0,0)
7 .305336 .305335 0.307068 6 35 (0,0,0)
8 .335742 .335740 0.338126 7 34 (0,0,0)
9 .345684 .345687 0.401214 0 40 (0,0,1)

10 .346266 .346269 0.403568 1 40 (0,0,1)
11 .358167 .358170 0.410630 2 39 (0,0,1)
12 .368656 .368658 0.373962 8 33 (0,0,0)
13 .370658 .370656 0.422399 3 38 (0,0,1)
14 .380266 .380267 0.438677 0 40 (0,1,0)
15 .380826 .380826 0.441106 1 40 (0,1,0)

a Other symbols are the same as those in Table 1.

TABLE 4: Selected Low Bound-State Energies forJ ) 40
and Odd Spectroscopic Symmetry from DS/LSFD, LHFD,
and J-Shifting Approximation a

n DS/LSFD LHFD J-shifting Ka Kc (ν1,ν2,ν3)

1 .225158 .225160 0.223449 1 39 (0,0,0)
2 .229505 .229452 0.230617 2 38 (0,0,0)
3 .241961 .241962 0.242562 3 37 (0,0,0)
4 .258325 .258326 0.259286 4 36 (0,0,0)
5 .279508 .279508 0.280788 5 35 (0,0,0)
6 .305336 .305335 0.307068 6 34 (0,0,0)
7 .335742 .335741 0.338126 7 33 (0,0,0)
8 .352246 .352249 0.403568 1 39 (0,0,1)
9 .356469 .356471 0.410630 2 38 (0,0,1)

10 .368807 .368810 0.373962 8 32 (0,0,0)
11 .370658 .370656 0.422399 3 37 (0,0,1)
12 .384935 .384937 0.441106 1 39 (0,1,0)

a Other symbols are the same as those in Table 1.
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and adiabatic rotation approximations are very similar in spirit,
and in this paper we have not distinguished them in the
discussions). Rotational constantsA, B, andC used in this work
are taken from the experimental results of Burkholder et al.,87

which are (20.3565236, 1.1180340, and 1.05631924) for the
(0,0,0) band, (20.309223, 1.0741278, and 1.573005) for the
(0,0,1) band and (20.957744, 1.0832341, and 1.650704) for the
(0,1,0) band (unit in cm-1). For these lowest bound states, a
spectroscopic assignment has also been made (see the last three
columns). From Tables 1-6 we can see that for the first two
lowest energy levels withKa ) 0 and 1 in (0,0,0) band, because
of their closeness in energy, the mixing of differentΩ
components of the wave function forJ > 0 is apparent, and
J-shifting results are not very close to the quantum results.
However, for the following six energy levels withKa ) 2-7 in
the (0,0,0) band,J-shifting results are very close to exact
quantum results. For these energy levels, theJ-shifting ap-
proximation is indeed very good, given that the vibrational
energy levels from DMBE IV PES are normally lower than the
experimental results and that inJ-shifting approximation we
have used experimental rotational constantsA, B, andC in this
work. For the following energy levels, because of more serious
mixing in different band levels, that is, in (0,0,0), (0,0,1) and
(01,0), J-shifting approximation becomes less accurate in
predicting the ro-vibrational energy levels. We note that even
in this range of mixing energy levelsJ-shifting still predicts
much better results for the (0,0,0) band than for the other two
bands, possibly because of more accurate rotational constants
A, B, andC or less serious mixing for this band.

Another approximation used widely in dynamical calculations
is the so-called helicity-conserving approximation.88,89 In the
helicity-conserving (HC) approximation (also known as cen-
trifugal sudden approximation), the Coriolis coupling blocks,
ĤΩ,Ω(1, in eq 3 are simply ignored and the diagonal block,
ĤΩ,Ω , in eq 2 can be solved independently for eachΩ at a
fixed J value. A common characteristic in these different levels
of approximations is whether a good quantum number,Ω ,
exists, and in this paper we do not perform helicity-conserving
calculations explicitly, instead we will make a relatively easy
comparison of the energy levels with the sameKa but from
different spectroscopic symmetries; for example, Table 1 with
Table 2, Table 3 with Table 4, and Table 5 with Table 6, to see
whetherΩ is a good quantum number. Thus, we can judge
whether the helicity-conserving approximation is a good ap-
proximation. If the calculated energies from even and odd
symmetries are nearly the same for the sameΩ component,
then Ω is a good quantum number. This is because near
degeneracy exists for the sameΩ components from both
symmetries. Therefore, helicity-conserving calculations or even
much simpler adiabatic rotation approximations should be
accurate, which will save quite a lot of computational time. By
such a comparison of the corresponding energy levels, we can
see that whenever the energy levels become close, the mixing
of differentΩ components is more serious, and the differences
of the corresponding energy levels become large. For example,
for the first two lowest energy levels withKa ) 0 and 1 in each
(ν1,ν2,ν3) band, because of their closeness in energy, the mixing
of these twoΩ components is more severe, and the differences
of the corresponding energy levels become large. Indeed,
through comparison of the energy levels with the sameKa but
from different spectroscopic symmetries, we can judge whether
Ω is a good quantum number and thus determine whether
helicity-conserving or even the much simpler adiabatic rotation
approximation are good approximations, that is, if the calculated
energies from even and odd symmetries are nearly the same
for the sameΩ component, thenΩ is a good quantum number.
Unfortunately, for the HO2 system this is not true for most
bound-state levels, in particular for highJ values as discussed
in this paper. This indicates that for the HO2 system the Coriolis
coupling is very important and various approximations might
cause inaccuracies; thus, exact quantum mechanical calculations
are needed. Also, it is interesting that the results of these
approximations cannot, in and of themselves, tell us whether
the approximations are valid or not; such analysis relies on either
accurate quantum mechanical calculations or experimental
results.

The second energy window we have chosen is close to and
above the dissociation threshold from 2.0958 to 2.1758 eV. The
computational demands are progressively greater as one moves
up into denser regions of the spectrum. In the calculations
reported in this paper, we have used the largest Chebyshev
iterations of more than 1 000 000 for even symmetry to converge
these high-lying bound states. We believe that the iteration
number used in this paper is one of the largest published, and
interestingly the damped Chebyshev recursion proves to be very
stable. In tables 7-9, we have listed selected 60 high-lying
bound states for even symmetry ofJ ) 30, 40, and 50 from
DS/LSFD calculations. For the high-lying bound states, we have
failed to assign them unambiguously (indeed even for theJ )
0 case, one cannot make the assignments for the high-lying
bound states of the HO2 system because of its essentially chaotic
characteristic). For example, we have analyzed the high-lying
bound-state energies near the dissociation threshold fromJ )

TABLE 5: Selected Low Bound-State Energies forJ ) 50
and Even Spectroscopic Symmetry from DS/LSFD, LHFD,
and J-Shifting Approximation a

n DS/LSFD LHFD J-shifting Ka Kc (ν1,ν2,ν3)

1 .337633 .337636 0.343722 0 50 (0,0,0)
2 .337923 .337925 0.346111 1 50 (0,0,0)
3 .353452 .353455 0.353278 2 49 (0,0,0)
4 .362818 .362821 0.365223 3 48 (0,0,0)
5 .379279 .379281 0.381947 4 47 (0,0,0)
6 .400257 .400258 0.403449 5 46 (0,0,0)
7 .425905 .425906 0.429729 6 45 (0,0,0)
8 .456121 .456120 0.460787 7 44 (0,0,0)
9 .462009 .462013 0.550546 0 50 (0,0,1)

10 .462292 .462296 0.552900 1 50 (0,0,1)
11 .477640 .477644 0.559962 2 49 (0,0,1)
12 .486861 .486864 0.496624 8 43 (0,0,0)
13 .490829 .490828 0.571732 3 48 (0,0,1)
14 .499818 .499819 0.592906 0 50 (0,1,0)
15 .500070 .500071 0.595335 1 50 (0,1,0)

a Other symbols are the same as those in Table 1.

TABLE 6: Selected Low Bound-State Energies forJ ) 50
and Odd Spectroscopic Symmetry from DS/LSFD, LHFD,
and J-Shifting Approximation a

n DS/LSFD LHFD J-shifting Ka Kc (ν1,ν2,ν3)

1 .346874 .346877 0.346111 1 49 (0,0,0)
2 .349929 .349932 0.353278 2 48 (0,0,0)
3 .363344 .363347 0.365223 3 47 (0,0,0)
4 .379251 .379252 0.381947 4 46 (0,0,0)
5 .400258 .400259 0.403449 5 45 (0,0,0)
6 .425905 .425906 0.429729 6 44 (0,0,0)
7 .456121 .456121 0.460787 7 43 (0,0,0)
8 .471153 .471157 0.552900 1 49 (0,0,1)
9 .474154 .474158 0.559962 2 48 (0,0,1)

10 .487383 .487386 0.496624 8 42 (0,0,0)
11 .490829 .490828 0.571732 3 47 (0,0,1)
12 .503052 .503055 0.595335 1 49 (0,1,0)

a Other symbols are the same as those in Table 1.
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30 calculations for both even and odd spectroscopic symmetries,
respectively (the results for the high-lying bound-state energies
for odd symmetry are not shown here, and they can be obtained
from the authors upon request). Although only several of them
can be assigned tentatively, most of them cannot be assigned
with confidence. This indicates that the mixing of differentΩ
components is so strong thatΩ is no longer a good quantum
number even qualitatively. Of course, the difficulties in assign-
ment also arise from the fact that the spacings between these
high-lying bound states are becoming smaller and smaller. For
this system, it seems that HC calculations or adiabatic rotation
approximations can give reasonably accurate results only for
some low bound-state energies. This observation is consistent
with the previously reportedJ > 0 total reaction probability
calculations for this system, which show that for HO2 the
Coriolis coupling is important and cannot be ignored.90 Interest-
ingly, this situation is in contrast to the H2O and HOCl system,
for which HC or AR is a good approximation.48,91,92

4. Conclusions

In this paper the doubling scheme/low storage filter diago-
nalization (DS/LSFD) method as well as the Lanczos homo-
geneous filter diagonalization (LHFD) method have been applied
to the very challenging case of HO2 with total angular
momentumJ ) 30, 40, and 50 to compute low- as well as high-
lying bound state energies. Both methods have proved stable
over very large numbers of iterations and are capable of
computing the entire spectrum from a single recursion. Regard-
ing the relative efficiencies, the two iterative methods are
roughly comparable, with the DS/LSFD method being margin-
ally favored. For the low-lying bound states, the results from

the DS/LSFD and LHFD methods are in good agreement and
they are in general agreement with the variational results

TABLE 7: Selected High-Lying Bound-State Energies from
DS/LSFD Calculations for J ) 30 and Even Spectroscopic
Symmetrya

n En n En

1 2.097479 31 2.104023
2 2.097618 32 2.104259
3 2.097808 33 2.104390
4 2.098177 34 2.104621
5 2.098459 35 2.104771
6 2.098578 36 2.105079
7 2.098621 37 2.105193
8 2.098820 38 2.105440
9 2.099273 39 2.105529

10 2.099590 40 2.105618
11 2.099644 41 2.105866
12 2.099652 42 2.106084
13 2.100109 43 2.106178
14 2.100455 44 2.106442
15 2.100716 45 2.106813
16 2.100817 46 2.106981
17 2.101054 47 2.107115
18 2.101105 48 2.107307
19 2.101448 49 2.107594
20 2.101639 50 2.107771
21 2.101846 51 2.108062
22 2.102029 52 2.108186
23 2.102114 53 2.108259
24 2.102455 54 2.108442
25 2.102652 55 2.108678
26 2.102863 56 2.108882
27 2.103016 57 2.108983
28 2.103259 58 2.109160
29 2.103532 59 2.109577
30 2.103734 60 2.109759

a The ro-vibrational ground-state energy was calculated at-2.015861
eV relative to the dissociation limit of H+ O2, which is referred to as
the zero energy point. All energy units are in eV.

TABLE 8: Selected High-Lying Bound-State Energies from
DS/LSFD Calculations for J ) 40 and Even Spectroscopic
Symmetrya

n En n En

1 2.097620 31 2.104973
2 2.097828 32 2.105265
3 2.098278 33 2.105369
4 2.098372 34 2.105674
5 2.098522 35 2.106027
6 2.098745 36 2.106264
7 2.098940 37 2.106496
8 2.099152 38 2.106748
9 2.099396 39 2.107273

10 2.099708 40 2.107407
11 2.099916 41 2.107501
12 2.100081 42 2.107845
13 2.100303 43 2.108027
14 2.100472 44 2.108506
15 2.100798 45 2.108627
16 2.101049 46 2.108783
17 2.101248 47 2.108853
18 2.101565 48 2.109204
19 2.101654 49 2.109601
20 2.102025 50 2.109859
21 2.102200 51 2.110198
22 2.102340 52 2.110376
23 2.102825 53 2.110858
24 2.103106 54 2.110894
25 2.103567 55 2.111140
26 2.103712 56 2.111267
27 2.104019 57 2.111459
28 2.104398 58 2.111635
29 2.104651 59 2.111898
30 2.104860 60 2.112042

a Other symbols are the same as those in Table 7.

TABLE 9: Selected High-Lying Bound-State Energies from
DS/LSFD Calculations for J ) 50 and Even Spectroscopic
Symmetrya

n En n En

1 2.095940 31 2.103903
2 2.096289 32 2.104196
3 2.096725 33 2.104238
4 2.097112 34 2.104542
5 2.097477 35 2.104610
6 2.097537 36 2.104802
7 2.097967 37 2.105254
8 2.098137 38 2.105771
9 2.098375 39 2.106014

10 2.098567 40 2.106200
11 2.098758 41 2.106492
12 2.098945 42 2.106592
13 2.099091 43 2.106832
14 2.099165 44 2.106979
15 2.099851 45 2.107098
16 2.099960 46 2.107309
17 2.100142 47 2.107520
18 2.100804 48 2.107862
19 2.101049 49 2.108247
20 2.101120 50 2.108479
21 2.101236 51 2.108788
22 2.101404 52 2.109068
23 2.101670 53 2.109301
24 2.101739 54 2.109648
25 2.102167 55 2.109788
26 2.102411 56 2.109908
27 2.102725 57 2.110256
28 2.103004 58 2.110365
29 2.103294 59 2.110621
30 2.103631 60 2.110859

a Other symbols are the same as those in Table 7.

3252 J. Phys. Chem. A, Vol. 110, No. 9, 2006 Zhang and Smith



reported previously for theJ ) 30 even-symmetry case. Using
these quantum results, we have tested the widely used ap-
proximateJ-shifting and helicity-conserving methods for such
high J values for the HO2 system. The results indicate that
whenever the energy levels become close the mixing of different
Ω components of the wave function is more serious and the
predictions fromJ-shifting or helicity-conversing approximations
will be less reliable. For high-lying bound states, unambiguous
assignment becomes impossible becasue of stronger mixing as
well as the closeness of the energy levels. For the HO2 system,
the Coriolis coupling is very important andΩ is no longer a
good quantum number such that exact quantum mechanical
calculations are needed. Such rigorous quantum calculations
have only recently become possible through both the parallel
computing strategy and the development of more efficient
methodology.
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